Signals and Systems

Ch1 Signals and Systems

Power and Energy of signals

E=limTTT|x(t)|2dtP=limT12TTT|x(t)|2dtE=n=|x[n]|2P=limN12N+1n=|x[n]|2

Odd and Even signals

Odd and Even components of signals

Impulse signal

Unit step signal

Properties of systems

Example

Ch2 - LTI Systems

离散时间信号可以看成单位脉冲序列 δ[nk] 的加权求和(线性组合),即:

x[n]=k=x[k]δ[nk]

卷积的性质:交换律、结合律、函数卷积后的微分:

ddt[x(t)h(t)]=x(t)ddth(t)=ddtx(t)h(t)

函数时移后的卷积:

x(tt1)h(tt2)=y(tt1t2)

Ch3 - Fourier Series

CT

x(t)=k=akejkω0t
ak=1TTx(t)ejkω0tdt

Convergence of FS

Dirichlet Condition:

Example: x(t)=sin(2πt),0<t1 violates condition 2.

img

Example:img

DirichletConvergeConvergeDirichlet

根据公式手推 Fourier Series

PropertySignalFourier Series
Time Shiftingx(tt0)akejkω0t0
Time Scalingx(at)x(at)=k=akejk(aω0)t
Time Reversalx(t)ak
Conjugationx(t)ak
Differentiationdx(t)dtjkω0ak
Integrationtx(t)1jkω0ak
Multiplicationx(t)y(t)ck=akbk

DT

x[n]=k=Nakejkω0nak=1Nn=Nx[n]ejkω0n

Ch4 - Fourier Transform

Periodic SignalsFourier SeriesAll SignalsFourier Transform

对于特征函数,输入 x(t)=ejωt,输出 y(t)=H(jω)ejωt.

若输入 x(t)=sinωt,则输出 y(t)=|H(jω)|sin(ωt+φ(ω)).

CT

Analysis FT equation:

X(jω)=x(t)ejωtdt

Synthesis FT equation:

x(t)=12πX(jω)ejωtdω

Basic CTFT pairs

NameFunctionFourier TransformEquation
Impulse Functionδ(tt0)ejωt0Analysis
Impulse Function 2ejω0t2πδ(ωω0)Synthesis
Gate Function{1,|t|T0,else2sin(ωT)ω=2TSa(ωT)Analysis
Ideal low pass filtersinWtπt=tSa(Wt)/π{1,|ω|W0,elseSynthesis
Single-side Expeαtu(t)1a+jωAnalysis
Double-side Expeα|t|2αα2+ω2 
Sign Functionsgn(t)2jωSingle-side Exp
Step Functionu(t)πδ(ω)+1jωSign
Cosine Functioncos(ω0t)π[δ(ω+ω0)+δ(ωω0)]Impulse
Sine Functionsin(ω0t)jπ[δ(ω+ω0)δ(ωω0)]Impulse
Triangle Function{1|t|/T,|t|T0,else4sin2(ωT/2)ω2T=TSa2(ωT/2)Gate

Properties of CTFT

先写下 Analysis 和 Synthesis Equation,然后填空

PropertySignalFourier Transform
Time Shiftingx(tt0)ejωt0X(jω)
Frequency Shiftingx(t)ejω0tX[j(ωω0)]
Conjugationx(t)X(jω)
Time and frequency Scalingx(at)1|a|X(jωa)
Time reversex(t)X(jω)
Differentiation(in Time)dx(t)dtjωX(jω)
Integrationtx(τ)dτ1jωX(jω)+πX(0)δ(ω)
Differentiation(in frequency)tx(t)jddωX(jω)
DualityX(jt)2πx(ω)
Convolution Propertyh(t)x(t)H(jω)X(jω)
Multiplication Propertyh(t)x(t)12πH(jω)X(jω)Y(f)=H(f)X(f)

Example

ddtf(at+b)Fjω|a|F(jωa)ejωb/a

FT of CT Periodic Signal

x(t)=k=+akejkω0tFX(jω)=2πk=+akδ(ωkω0)

特殊函数:

 

Parseval's Relation

|x(t)|2dt=12π|X(jω)|2dω=|X(f)|2df

Comparing with Laplace Transform

System Analysis by CTFT

如果系统可以用微分方程的形式表示,则 H(jω) 为有理函数。

H(jω)=Y(jω)X(jω)=k=0Mbk(jω)kk=0Nak(jω)k

DT

傅里叶变换时求和,逆变换是积分。

X(ejω)=n=x[n]ejωnx[n]=12π2πX(jω)ejωndω

Basic DTFT pairs

NameSignalFourier Transform
Impulseδ[nn0]ejωn0
Expu(n)an11aejω
Gate{1,|n|N10,|n|>N1sinω(N1+1/2)sin(ω/2)
Ideal low-passsinWnπn{1,|ω|W0,else

For DT, ejkω0nFδ(ωkω0),

x[n]=k=Nakejkω0n,ω0=2πNFX(jω)=k=2πaklδ(ωkω02πl)

Properties of DTFT

Periodicity only for DTFT

X(ejω)=X(ej(ω+2π))
PropertySignalFourier Transform
Time Shiftingx[nn0]ejωn0X(ejω)
Frequency Shiftingx[n]ejω0nX(ej(ωω0))
Conjugationx[n]X(ej(ω))
Differencingx[n]x[n1](1ejω)X(ejω)
Accumulationk=nx[k]X(ejω)+πX(ej0)l=nδ[ω2πl]
Time Scalingx(k)[n]X(ejkω)
Time Reversingx[n]X(ejω)
Differentiation in frequencynx[n]jX(ejω)dω
Convolution propertyx[n]h[n]X(ejω)H(ejω)
Multiplication propertyx[n]h[n]12πX(ejω)H(ejω)

Parseval's relationship

n=|x[n]|2=12π2π|X(ejω)|2dω

Comparing with Z transform

Time DomainFrequency Domain
ContinuousAperiodic
DiscretePeriodic
PeriodicDiscrete
AperiodicContinuous

注,可以通过形象的例子加深理解。

  1. 1F2πδ(ω).

  2. δ(tt0)Fejωt0.

  3. FT of CT Periodic Signal

  4. Gate function or delta function.

Ch5 - Application of Fourier Transform

无失真传输条件

H(jω)=Kejωt0h(t)=Kδ(tt0)

Sampling Theorem

对于连续时间信号 x(t),若用冲激串 p(t)=n=+δ(tnT) 对其进行采样,则在时域内有 xp(t)=x(t)p(t);在频域内,有

P(jω)=ωsn=+δ(ωkωs)
Xp(jω)=12πX(jω)P(jω)
Xp(jω)=1Tk=+X(j(ωkωs))

结论:采样所得信号 xp(t) 的频谱函数 Xp(jω) 是由无穷多个平移了的、同时幅度上有 1/T 的尺度变换的 X(jω) 叠加构成的。通过增益为 T 的低通滤波器,截止频率大于 ωm 但是小于 ωsωm 的低通滤波器,即可还原 x(t).

The Modulation Property(经过低通滤波,幅值为二)

画图表示

 

 

 

 

 

 

Ideal Filters

Practical Filters

Ch6 - Laplace Transform

The Bilateral Laplace transform is defined as

x(t)LX(s)=x(t)estdt=[x(t)eσt]ejωtdt

where s=σ+jω. Notice that X(s)=F{x(t)eσt}.

The Inverse Laplace Transform can be derived from the inverse FT.

x(t)=12πjσjσ+jX(s)estds

Laplace Pairs

1s+aL{eatu(t),Re{s}>Re{a}eatu(t),Re{s}<Re{a}

Properties of the Laplace Transform

PropertySignalLaplace TransformROC
Linearityax1(t)+bx2(t)aX1(s)+bX2(s)At least R1R2
Time Shiftingx(tt0)est0X(s)R
Shifting ses0tx(t)X(ss0)R+s0
Time Scalingx(at)1|a|X(sa)aR
Conjugationx(t)X(s)R
Convolutionx1(t)x2(t)X1(s)X2(s)At least R1R2
D in Time Domaindx(t)/dtsX(s)At least R
D in s-Domaintx(t)dX(s)/dsR
Integration in Time Domaintx(τ)dτ1sX(s)At least R{Re{s}>0}

Initial- and Final-value Theorems

If x(t)=0 for t<0 and x(t) contains no singularities at t=0, then

x(0+)=limssX(s)

分母的阶次高于分子的阶次,不能有常数值。

Final-value theorem

If x(t)=0 for t<0 and x(t) has a finite limit as t, then

limtx(t)=lims0sX(s)

Geometric evaluation of FT from pole-zero

CT system function properties

  1. System is stable h(t) is stable |h(t)|dt< ROC of H(s) includes jω axis.

  2. Causality h(t) right-sided signal ROC of H(s) is a right-half plane.

    特别注意 causal 和 right-sided 的区别。

    ROC right-half plane 但系统不 Causal 的反例:H(s)=esTs+1,Re{s}>1

    但是当且仅当 H(s) 有理时,系统因果和 ROC 在最右侧极点的右侧等价

    H(s) 有理且因果时,系统稳定 等价于虚轴在 ROC 中,等价于所有极点都在左半平面

  3. Steady State Response.

Block Diagram

Unilateral Laplace Transform

X(s)=0x(t)estdt=UL{x(t)}

If system is causal, then H(s)=H(s).

dx(t)dtLsX(s)x(0)
d2x(t)dt2Ls2X(s)sx(0)x(0)
d3x(t)dt3Ls3X(s)s2x(0)sx(0)x(0)

Ch7 - Z Transform

The Bilateral Z transform is defined as

x[n]ZX(z)=n=x[n]zn=Z{x[n]}

The relationship between Z transform and DTFT:

X(z)=n=x[n]rnejωn=F{x[n]rn}

Inverse Z transform

x[n]=12πj|z|=rX(z)zn1dz

Other method:

X(z)=n=0x(n)zn

Rational form:

Steps:

  1. Divide by z: X(z)z=N(z)D(z).(Add one pole to the function)

  2. Using Partial fractional expansion: X(z)zz.

  3. Inverse Z transform.

    zzaZ{anu(n),|z|>|a|anu(n1),|z|<|a|

Properties of Z Transform

PropertySignalZ TransformROC
Linearityax1[n]+bx2[n]aX1(z)+bX2(z)At least R1R2
Time shiftingx[nn0]zn0X(z)R
Scaling in the z-domainz0nx[n]X(z/z0)z0R
Time reversalx[n]X(z1)R1
Time expansionx(k)[n]X(zk)R1/k
Conjugationx[n]X(z)R
Convolutionx1[n]x2[n]X1(z)X2(z)At least R1R2
First Differencex[n]x[n1](1z1)X(z)At least R|z|>0
Accumulationk=nx[k]X(z)1z1At least R|z|>1
Differentiation in z-domainnx[n]zdX(z)dzR

Initial Value Theorem: If x[n]=0 for n<0, then x[0]=limzX(z).

Properties of Unilateral Z Transform

PropertySignalUni ZT
Linearityax1[n]+bx2[n]aX1(z)+bX2(z)
Time Delayx[n1]z1X(z)+x[1]
Time Delay 2x[n2]z2X(z)+z1x[1]+x[2]
Time Advancex[n+1]zX(z)zx[0]
Time Advance 2x[n+2]z2X(z)z2x[0]zx[1]
First Differencex[n]x[n1](1z1)X(z)x[1]
Accumulationk=0nx[k]11z1X(z)
Differentiation in z-domainnx[n]zdX(z)dz

Initial Value Theorem: x[0]=limzX(z).