Signals and SystemsCh1 Signals and SystemsCh2 - LTI SystemsCh3 - Fourier SeriesCTDTCh4 - Fourier TransformCTDTCh5 - Application of Fourier TransformCh6 - Laplace TransformCh7 - Z Transform
Power and Energy of signals
Odd and Even signals
Odd and Even components of signals
Impulse signal
Sampling property:
Scaling property:
Unit step signal
Properties of systems
Linearity: Scaling + Superposition
Scaling: If
Superposition: If
Time Invariance. If
Causality. If
Stability. A system is stable if the input to a stable system is bounded, then the output must also be bounded and therefore cannot diverge.
Example
Linear; Not Time Invariant; Non causal; Stable.
Linear; Not Time Invariant; Causal; Unstable.
Linear; Time Invariant; Causal; Unstable(求导).
Linear; Not Time Invariant; Causal; Stable.
Linear; Not Time Invariant; Non causal; Unstable.
离散时间信号可以看成单位脉冲序列
卷积的性质:交换律、结合律、函数卷积后的微分:
函数时移后的卷积:
Convergence of FS
Dirichlet Condition:
Condition 1:
Condition 2: In a finite time interval,
Example:
violates condition 2.
Condition 3: In a finite time interval,
Example:
根据公式手推 Fourier Series
| Property | Signal | Fourier Series |
|---|---|---|
| Time Shifting | ||
| Time Scaling | ||
| Time Reversal | ||
| Conjugation | ||
| Differentiation | ||
| Integration | ||
| Multiplication |
对于特征函数,输入
若输入
Analysis FT equation:
Synthesis FT equation:
Basic CTFT pairs
| Name | Function | Fourier Transform | Equation |
|---|---|---|---|
| Impulse Function | Analysis | ||
| Impulse Function 2 | Synthesis | ||
| Gate Function | Analysis | ||
| Ideal low pass filter | Synthesis | ||
| Single-side Exp | Analysis | ||
| Double-side Exp | |||
| Sign Function | Single-side Exp | ||
| Step Function | Sign | ||
| Cosine Function | Impulse | ||
| Sine Function | Impulse | ||
| Triangle Function | Gate |
Properties of CTFT
先写下 Analysis 和 Synthesis Equation,然后填空
| Property | Signal | Fourier Transform |
|---|---|---|
| Time Shifting | ||
| Frequency Shifting | ||
| Conjugation | ||
| Time and frequency Scaling | ||
| Time reverse | ||
| Differentiation(in Time) | ||
| Integration | ||
| Differentiation(in frequency) | ||
| Duality | ||
| Convolution Property | ||
| Multiplication Property |
Example
FT of CT Periodic Signal
谱线位置:
谱线幅度:
特殊函数:
梳状函数:
周期方波:周期
Parseval's Relation
Comparing with Laplace Transform
System Analysis by CTFT
如果系统可以用微分方程的形式表示,则
傅里叶变换时求和,逆变换是积分。
Basic DTFT pairs
| Name | Signal | Fourier Transform |
|---|---|---|
| Impulse | ||
| Exp | ||
| Gate | ||
| Ideal low-pass |
For DT,
Properties of DTFT
Periodicity only for DTFT
| Property | Signal | Fourier Transform |
|---|---|---|
| Time Shifting | ||
| Frequency Shifting | ||
| Conjugation | ||
| Differencing | ||
| Accumulation | ||
| Time Scaling | ||
| Time Reversing | ||
| Differentiation in frequency | ||
| Convolution property | ||
| Multiplication property |
Parseval's relationship
Comparing with Z transform
| Time Domain | Frequency Domain |
|---|---|
| Continuous | Aperiodic |
| Discrete | Periodic |
| Periodic | Discrete |
| Aperiodic | Continuous |
注,可以通过形象的例子加深理解。
.
. FT of CT Periodic Signal
Gate function or delta function.
无失真传输条件
幅频特性为一常数。
相频特性为一条过原点的负斜率直线。
Group delay:
无相位失真时,
Sampling Theorem
对于连续时间信号
结论:采样所得信号
的频谱函数 是由无穷多个平移了的、同时幅度上有 的尺度变换的 叠加构成的。通过增益为 的低通滤波器,截止频率大于 但是小于 的低通滤波器,即可还原 .
The Modulation Property(经过低通滤波,幅值为二)
画图表示
Ideal Filters
Lowpass, Highpass(1-low).
Bandpass(low-low), Bandstop(1-bandpass).

Practical Filters
The Bilateral Laplace transform is defined as
where
The Inverse Laplace Transform can be derived from the inverse FT.
Laplace Pairs
Properties of the Laplace Transform
| Property | Signal | Laplace Transform | ROC |
|---|---|---|---|
| Linearity | At least | ||
| Time Shifting | |||
| Shifting | |||
| Time Scaling | |||
| Conjugation | |||
| Convolution | At least | ||
| D in Time Domain | At least | ||
| D in | |||
| Integration in Time Domain | At least |
Initial- and Final-value Theorems
If
分母的阶次高于分子的阶次,不能有常数值。
Final-value theorem
If
Geometric evaluation of FT from pole-zero
CT system function properties
System is stable
Causality
特别注意 causal 和 right-sided 的区别。
ROC right-half plane 但系统不 Causal 的反例:
但是当且仅当
当
Steady State Response.
Block Diagram
Unilateral Laplace Transform
If system is causal, then
ZIR: Response for zero input.
ZSR: Response for zero state input. (Bilateral)
Total Response: ZIR+ZSR
The Bilateral Z transform is defined as
The relationship between Z transform and DTFT:
Inverse Z transform
Other method:
Rational form:
Steps:
Divide by
Using Partial fractional expansion:
Inverse Z transform.
Properties of Z Transform
| Property | Signal | Z Transform | ROC |
|---|---|---|---|
| Linearity | At least | ||
| Time shifting | |||
| Scaling in the | |||
| Time reversal | |||
| Time expansion | |||
| Conjugation | |||
| Convolution | At least | ||
| First Difference | At least | ||
| Accumulation | At least | ||
| Differentiation in |
Initial Value Theorem: If
Causal?
Stability?
Properties of Unilateral Z Transform
| Property | Signal | Uni ZT |
|---|---|---|
| Linearity | ||
| Time Delay | ||
| Time Delay 2 | ||
| Time Advance | ||
| Time Advance 2 | ||
| First Difference | ||
| Accumulation | ||
| Differentiation in |
Initial Value Theorem: