# Signals and Systems [TOC] ## Ch1 Signals and Systems **Power and Energy of signals** $$ E_{\infin} = \lim_{T\to \infin} \int_{-T}^{T} |x(t)|^2\mathrm d t\\ P_{\infin}=\lim_{T\to \infin} \frac{1}{2T}\int_{-T}^{T}|x(t)|^2\mathrm d t\\ E_{\infin} = \sum_{n=-\infin}^{\infin} |x[n]|^2\\ P_{\infin} = \lim_{N\to \infin}\frac{1}{2N+1}\sum_{n=-\infin}^{\infin}|x[n]|^2 $$ **Odd and Even signals** **Odd and Even components of signals** **Impulse signal** - Sampling property: $x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$. - Scaling property: $\delta(at)=\delta(t)/|a|$. **Unit step signal** **Properties of systems** - ***Linearity***: Scaling + Superposition - Scaling: If $x(t)\to y(t)(x[n]\to y[n])$, then $$ kx(t)\to ky(t)(kx[n]\to ky[n]) $$ - Superposition: If $x_1(t)\to y_1(t),x_2(t)\to y_2(t)$, then $$ x_1(t)+x_2(t)\to y_1(t)+y_2(t) $$ - ***Time Invariance***. If $x(t)\to y(t)$, then $$ x(t-t_0)\to y(t-t_0) $$ - ***Causality***. If $x(t)=0,t Example: $x(t)=\displaystyle \sin \left(\frac{2\pi}{t}\right), 0 > ![img](https://notes.sjtu.edu.cn/uploads/upload_d9db2022117e1625f6cbdfedd8b29fb4.png) - Condition 3: In a finite time interval, $x(t)$ has only a finite number of discontinuities. > Example:![img](https://notes.sjtu.edu.cn/uploads/upload_1e282c3ef0fd4e13f7bda8415c9b8d95.png) $$ \mathrm{Dirichlet} \Rightarrow \mathrm{Converge}\\ \mathrm{Converge} \not\Rightarrow \mathrm{Dirichlet} $$ **根据公式手推 Fourier Series** | Property | Signal | Fourier Series | | --------------- | -------------------------------------------------- | ------------------------------------------------------------ | | Time Shifting | $x(t-t_0)$ | $a_ke^{-jk\omega_0 t_0}$ | | Time Scaling | $x(at)$ | $x(at)=\displaystyle \sum_{k=-\infin}^{\infin} a_k e^{jk(a\omega_0) t}$ | | Time Reversal | $x(-t)$ | $a_{-k}$ | | Conjugation | $x^*(t)$ | $a_{-k}^*$ | | Differentiation | $\displaystyle \frac{\mathrm d x(t)}{\mathrm d t}$ | $jk\omega_0 a_k$ | | Integration | $\displaystyle \int_{-\infin}^t x(t)$ | $\displaystyle \frac{1}{jk\omega_0} a_k$ | | Multiplication | $x(t)y(t)$ | $c_k=a_k*b_k$ | ### DT $$ \boxed{x[n]=\sum_{k=\left\langle N\right\rangle}a_k e^{jk\omega_0 n}}\\ \boxed{ a_k={\color{red}\frac{1}{N}}\sum_{n=\langle N\rangle} x[n] e^{-jk\omega_0 n} } $$ ## Ch4 - Fourier Transform $$ \underbrace{\mathrm{Periodic\ Signals}}_{\mathrm{Fourier\ Series}} \Rightarrow \underbrace{\mathrm{All \ Signals}}_{\mathrm{Fourier\ Transform}} $$ 对于特征函数,输入 $x(t)=e^{j\omega t}$,输出 $y(t)=H(j\omega)e^{j\omega t}$. 若输入 $x(t)=\sin \omega t$,则输出 $y(t)=|H(j\omega)|\sin(\omega t+\varphi(\omega))$. ### CT **Analysis FT equation**: $$ \boxed{X(j\omega)=\int_{-\infin}^{\infin} x(t) e^{-j\omega t}\mathrm d t} $$ **Synthesis FT equation**: $$ \boxed{x(t)={\color{red}\frac{1}{2\pi}} \int_{-\infin}^{\infin} X(j\omega) e^{j\omega t}\mathrm d \omega} $$ **Basic CTFT pairs** | Name | Function | Fourier Transform | Equation | | --------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | --------------- | | Impulse Function | $\delta(t-t_0)$ | $e^{-j\omega t_0}$ | Analysis | | Impulse Function 2 | $e^{j\omega_0t}$ | $2\pi\delta(\omega-\omega_0)$ | Synthesis | | Gate Function | $$\begin{cases}1, & |t|\le T\\0, & else\end{cases}$$ | $\displaystyle \frac{2\sin (\omega T)}{\omega}=2T\operatorname{Sa}(\omega T)$ | Analysis | | Ideal low pass filter | $\displaystyle \frac{\sin Wt}{\pi t}=t\operatorname{Sa}(Wt)/\pi$ | $\begin{cases}1,&|\omega|\le W\\0,&else\end{cases} $ | Synthesis | | Single-side Exp | $e^{-\alpha t}u(t)$ | $\displaystyle \frac{1}{a+j\omega}$ | Analysis | | Double-side Exp | $e^{-\alpha|t|}$ | $\displaystyle \frac{2\alpha}{\alpha^2+\omega^2}$ | | | Sign Function | $\operatorname{sgn}(t)$ | $\displaystyle \frac{2}{j\omega}$ | Single-side Exp | | Step Function | $u(t)$ | $\displaystyle \pi \delta(\omega)+\frac{1}{j\omega}$ | Sign | | Cosine Function | $\cos (\omega_0 t)$ | $\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$ | Impulse | | Sine Function | $\sin (\omega_0t)$ | $j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$ | Impulse | | *Triangle* Function | $$\begin{cases}1-|t|/T, & |t|\le T\\0, & else\end{cases}$$ | $\displaystyle \frac{4 \sin^2 (\omega T/2)}{\omega^2T}=T\operatorname{Sa}^2(\omega T/2)$ | Gate | **Properties of CTFT** > 先写下 Analysis 和 Synthesis Equation,然后填空 | Property | Signal | Fourier Transform | | ----------------------------- | ------------------------------------------------------ | ------------------------------------------------------------ | | Time Shifting | $x(t-t_0)$ | $e^{-j\omega t_0}X(j\omega)$ | | Frequency Shifting | $x(t) e^{ j\omega_0 t}$ | $X[j(\omega - \omega_0)]$ | | Conjugation | $x^*(t)$ | $ X^*(-j\omega)$ | | Time and frequency Scaling | $x(at)$ | $\displaystyle \frac{1}{|a|}X\left(\frac{j\omega}{a}\right)$ | | Time reverse | $x(-t)$ | $X(-j\omega)$ | | Differentiation(in Time) | $\displaystyle \frac{\mathrm d x(t)}{\mathrm d t}$ | $j\omega X(j\omega)$ | | Integration | $\displaystyle \int_{-\infin}^t x(\tau)\mathrm d \tau$ | $\displaystyle \frac{1}{j\omega} X(j\omega)+ \pi X(0)\delta(\omega)$ | | Differentiation(in frequency) | $tx(t)$ | $\displaystyle j\frac{\mathrm d }{\mathrm d \omega}X(j\omega)$ | | Duality | $X(j\boxed{t})$ | $\boxed{2\pi} x(\boxed{-\omega})$ | | Convolution Property | $h(t)*x(t)$ | $H(j\omega)X(j\omega)$ | | Multiplication Property | $h(t)x(t)$ | $\displaystyle \frac{1}{2\pi}H(j\omega)*X(j\omega)\\{\color{grey}Y(f)=H(f)*X(f)}$ | > Notes: > > - $x(t)$ is real signal $\Rightarrow X(j\omega)=X^*(-j\omega)$. > - $x(t)$ real and even $\Rightarrow X(-j\omega)=X(j\omega)\Rightarrow X(j\omega)=X^*(j\omega)\Rightarrow$ $X(j\omega)$ real. > - $x(t)$ real and odd $\Rightarrow X(-j\omega)=-X(j\omega)\Rightarrow X(j\omega)=-X^*(j\omega)\Rightarrow$ $\operatorname{Re}\{X(j\omega)\}=0$. **Example** $$ \frac{\mathrm d }{\mathrm d t} f(at +b) \overset{\mathcal F}{\operatorname*{\longleftrightarrow}} \frac{j\omega}{|a|} F\left(\frac{j\omega}{a}\right) e^{j\omega b/a} $$ **FT of CT Periodic Signal** $$ x(t)=\sum_{k=-\infin}^{+\infin}a_k e^{jk\omega_0 t} \overset{\mathcal F}\Rightarrow \\ X(j\omega)=2\pi\sum_{k=-\infin}^{+\infin} a_k\delta(\omega-k\omega_0) $$ - 谱线位置:$\omega=k\omega_0$;周期信号的 $X_{T}(\omega)$ 只存在于 $\omega=k\omega_0$ 处。 - 谱线幅度:$2\pi a_k$(离散谱) 特殊函数: - 梳状函数:$X_T(j\omega)=\omega_1 \delta_{\omega_1}(\omega)$. - 周期方波:周期 $T_1$,脉宽 $\tau$,高 $E$. $$ X(j\omega)=\sum_{n=-\infin}^{\infin} E\tau \operatorname{Sa}\left(n\omega_1 \frac{\tau}{2}\right)\omega_1\delta(\omega-n\omega_1) $$ **Parseval's Relation** $$ \int_{-\infin}^{\infin} |x(t)|^2 \mathrm d t = \frac{1}{2\pi} \int_{-\infin}^{\infin} |X(j\omega)|^2 \mathrm d \omega = \int_{-\infin}^{\infin} |X(f)|^2 \mathrm d f $$ ***Comparing with Laplace Transform*** **System Analysis by CTFT** 如果系统可以用微分方程的形式表示,则 $H(j\omega)$ 为有理函数。 $$ H(j\omega)=\frac{Y(j\omega)}{X(j\omega)}=\frac{\sum_{k=0}^M b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k} $$ ### DT 傅里叶变换时求和,逆变换是积分。 $$ \boxed{X(e^{j\omega})=\sum_{n=-\infin}^{\infin} x[n] e^{-j\omega n }}\\ \boxed{x[n]={\color{red}\frac{1}{2\pi}}\int_{2\pi} X(j\omega) e^{j\omega n}\mathrm d \omega} $$ **Basic DTFT pairs** | Name | Signal | Fourier Transform | | -------------- | ------------------------------------------------- | ----------------------------------------------------------- | | Impulse | $\delta[n-n_0]$ | $e^{-j\omega n_0}$ | | Exp | $u(n)a^n$ | $\displaystyle \frac{1}{1-ae^{-j\omega}}$ | | Gate | $\begin{cases}1,|n|\le N_1\\0,|n|>N_1\end{cases}$ | $\displaystyle \frac{\sin \omega(N_1+1/2)}{\sin(\omega/2)}$ | | Ideal low-pass | $\displaystyle \frac{\sin Wn}{\pi n}$ | $\begin{cases}1,&|\omega| \le W\\0,&else\end{cases}$ | For DT, $e^{jk\omega_0n} \overset{\mathcal F}{\operatorname*{\longleftrightarrow}} \delta(\omega-k\omega_0)$, $$ x[n]=\sum_{k=\langle N\rangle} a_k e^{jk\omega_0 n},\omega_0=\frac{2\pi}{N} \overset{\mathcal F}{\operatorname*{\longleftrightarrow}}\\ X(j\omega)=\sum_{k=-\infin}^{\infin} 2\pi a_k \sum_l \delta (\omega-k\omega_0-2\pi l) $$ **Properties of DTFT** > *Periodicity only for DTFT* > $$ > X(e^{j\omega})=X(e^{j(\omega+2\pi)}) > $$ | Property | Signal | Fourier Transform | | ---------------------------- | --------------------------------------- | ------------------------------------------------------------ | | Time Shifting | $x[n-n_0]$ | $e^{-j\omega n_0} X(e^{j\omega})$ | | Frequency Shifting | $x[n]e^{j\omega_0 n}$ | $X(e^{j(\omega-\omega_0)})$ | | Conjugation | $x^*[n]$ | $X^*(e^{j(-\omega)})$ | | Differencing | $x[n]-x[n-1]$ | $(1-e^{-j\omega})X(e^{j\omega})$ | | Accumulation | $\displaystyle \sum_{k=-\infin}^n x[k]$ | $X(e^{j\omega})+\pi X(e^{j0})\sum_{l=-\infin}^n \delta[\omega-2\pi l]$ | | Time Scaling | $x_{(k)}[n]$ | $X(e^{jk\omega})$ | | Time Reversing | $x[-n]$ | $X(e^{-j\omega})$ | | Differentiation in frequency | $nx[n]$ | $\displaystyle j\frac{X(e^{j\omega})}{\mathrm d \omega}$ | | Convolution property | $x[n]*h[n]$ | $X(e^{j\omega})H(e^{j\omega})$ | | Multiplication property | $x[n]h[n]$ | $\displaystyle \frac{1}{2\pi}X(e^{j\omega})*H(e^{j\omega})$ | **Parseval's relationship** $$ \sum_{n=-\infin}^{\infin} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 \mathrm d \omega $$ ***Comparing with Z transform*** | Time Domain | Frequency Domain | | ----------- | ---------------- | | Continuous | Aperiodic | | Discrete | Periodic | | Periodic | Discrete | | Aperiodic | Continuous | > 注,可以通过形象的例子加深理解。 > > 1. $1 \overset{\mathcal F}{\operatorname*{\longleftrightarrow}} 2\pi \delta(\omega)$. > 2. $\delta(t-t_0) \overset{\mathcal F}{\operatorname*{\longleftrightarrow}} e^{-j\omega t_0}$. > 3. FT of CT Periodic Signal > 4. Gate function or delta function. ## Ch5 - Application of Fourier Transform **无失真传输条件** $$ H(j\omega)=Ke^{-j\omega t_0 }\Rightarrow h(t) =K'\delta(t-t_0) $$ - 幅频特性为一常数。 - 相频特性为一条过原点的负斜率直线。 - Group delay: $$ \tau_g=-\frac{\mathrm d \varphi(\omega)}{\mathrm d \omega} $$ 无相位失真时,$\tau_g(\omega)$ 为常数。 **Sampling Theorem** 对于连续时间信号 $x(t)$,若用冲激串 $\displaystyle p(t)=\sum_{n=-\infin}^{+\infin} \delta(t-nT)$ 对其进行采样,则在时域内有 $x_p(t)=x(t)\cdot p(t)$;在频域内,有 $$ P(j\omega)=\omega_s \sum_{n=-\infin}^{+\infin} \delta(\omega-k\omega_s) $$ $$ X_p(j\omega)=\frac{1}{2\pi} X(j\omega) * P(j\omega) $$ $$ X_p(j\omega)={\color{red}\frac{1}{T}}\sum_{k=-\infin}^{+\infin} X(j(\omega-k\omega_s)) $$ > 结论:采样所得信号 $x_p(t)$ 的频谱函数 $X_p(j\omega)$ 是由无穷多个平移了的、同时幅度上有 $1/T$ 的尺度变换的 $X(j\omega)$ 叠加构成的。通过增益为 $T$ 的低通滤波器,截止频率大于 $\omega_m$ 但是小于 $\omega_s-\omega_m$ 的低通滤波器,即可还原 $x(t)$. **The Modulation Property**(经过低通滤波,幅值为二) 画图表示 **Ideal Filters** - Lowpass, Highpass(1-low). - Bandpass(low-low), Bandstop(1-bandpass). ![](https://notes.sjtu.edu.cn/uploads/upload_50f2c81574f5dc4a4f2a0f0a2391f751.png) **Practical Filters** ## Ch6 - Laplace Transform The ***Bilateral Laplace transform*** is defined as $$ x(t) \overset{\mathcal L}{\operatorname*{\longleftrightarrow}} X(s)=\int_{-\infin}^{\infin} x(t) e^{-st}\mathrm d t=\boxed{\int_{-\infin}^{\infin} [x(t) e^{-\sigma t}]e^{-j\omega t}\mathrm d t} $$ where $s=\sigma+j\omega$. Notice that $X(s)=\mathcal F\{x(t)e^{-\sigma t}\}$. The ***Inverse Laplace Transform*** can be derived from the inverse FT. $$ \boxed{x(t)={\color{red}\frac{1}{2\pi j}}\int_{\sigma-j\infin}^{\sigma+j\infin} X(s)e^{st}\mathrm d s} $$ **Laplace Pairs** $$ \frac{1}{s+a} \overset{\mathcal L}{\operatorname*{\longleftrightarrow}} \begin{cases} e^{-at}u(t),&\operatorname{Re}\{s\} >-\operatorname{Re}\{a\}\\ -e^{-at}u(-t),&\operatorname{Re}\{s\} <-\operatorname{Re}\{a\} \end{cases} $$ **Properties of the Laplace Transform** | Property | Signal | Laplace Transform | ROC | | -------------------------- | ------------------------------------------------------- | ------------------------------------------------------ | ---------------------------------------------- | | Linearity | $ax_1(t)+bx_2(t)$ | $aX_1(s)+bX_2(s)$ | At least $R_1 \cap R_2$ | | Time Shifting | $x(t-t_0)$ | $e^{-st_0}X(s)$ | $R$ | | Shifting $s$ | $e^{s_0 t}x(t)$ | $X(s-s_0)$ | $R+s_0$ | | Time Scaling | $x(at)$ | $\displaystyle \frac{1}{|a|}X\left(\frac{s}{a}\right)$ | $aR$ | | Conjugation | $x^*(t)$ | $X^*(s^*)$ | $R$ | | Convolution | $x_1(t)*x_2(t)$ | $X_1(s)X_2(s)$ | At least $R_1 \cap R_2$ | | D in Time Domain | $\mathrm d x(t)/\mathrm d t$ | $sX(s)$ | At least $R$ | | D in $s$-Domain | $-tx(t)$ | $\mathrm d X(s)/\mathrm d s$ | $R$ | | Integration in Time Domain | $\displaystyle \int_{-\infin}^{t}x(\tau)\mathrm d \tau$ | $\displaystyle \frac{1}{s}X(s)$ | At least $R\cap \{\operatorname{Re}\{s\} >0\}$ | **Initial- and Final-value Theorems** If $x(t)=0$ for $t<0$ and $x(t)$ contains *no singularities* at $t=0$, then $$ x(0^+) = \lim_{s\to \infin} sX(s) $$ > 分母的阶次高于分子的阶次,不能有常数值。 **Final-value theorem** If $x(t)=0$ for $t<0$ and $x(t)$ has *a finite limit* as $t\to \infin$, then $$ \lim_{t\to \infin} x(t) =\lim_{s\to 0} sX(s) $$ **Geometric evaluation of FT from pole-zero** **CT system function properties** 1. System is **stable** $\Leftrightarrow $ $h(t)$ is stable $\Leftrightarrow$ $\displaystyle \int_{-\infin}^{\infin} |h(t)|\mathrm d t<\infin$ $\Leftrightarrow$ ROC of $H(s)$ includes $j\omega$ axis. 2. **Causality** $\Rightarrow$ $h(t)$ right-sided signal $\Rightarrow$ ROC of $H(s)$ is a right-half plane. > 特别注意 causal 和 right-sided 的区别。 ROC right-half plane 但系统不 Causal 的反例:$\displaystyle H(s)=\frac{e^{sT}}{s+1}, \operatorname{Re}\{s\} >-1$ 但是当且仅当 $H(s)$ 有理时,系统因果和 ROC 在最右侧极点的右侧等价。 当 $H(s)$ 有理且因果时,系统稳定 等价于虚轴在 ROC 中,等价于所有极点都在左半平面。 3. Steady State Response. **Block Diagram** **Unilateral Laplace Transform** $$ \mathcal X(s)=\int_{0^-} ^{\infin } x(t) e^{-st}\mathrm d t=\mathcal {UL} \{x(t)\} $$ If system is causal, then $H(s)=\mathcal H(s)$. $$ \boxed{\frac{\mathrm d x(t)}{\mathrm d t} \overset{\mathcal L}{\operatorname*{\longleftrightarrow}} s\mathcal X(s)-x(0^{-})} $$ $$ \boxed{\frac{\mathrm d^2 x(t)}{\mathrm d t^2} \overset{\mathcal L}{\operatorname*{\longleftrightarrow}} s^2\mathcal X(s)-sx(0^{-})-x'(0^{-})} $$ $$ \boxed{\frac{\mathrm d ^3 x(t)}{\mathrm d t^3} \overset{\mathcal L}{\operatorname*{\longleftrightarrow}}s^3 \mathcal X(s)-s^2 x(0^-)-sx'(0^-)-x''(0^-)} $$ - ZIR: Response for zero input. $x(t)=0,\mathcal X(s)=0$. - ZSR: Response for zero state input. (Bilateral) - Total Response: ZIR+ZSR ## Ch7 - Z Transform The ***Bilateral Z transform*** is defined as $$ x[n] \overset{\mathcal Z}{\operatorname*{\longleftrightarrow}} X(z)=\sum_{n=-\infin}^{\infin} x[n] z^{-n} =Z \{x[n]\} $$ The relationship between Z transform and DTFT: $$ X(z)=\sum_{n=-\infin}^{\infin} x[n]r^{-n} e^{-j\omega n}=\mathcal F \{x[n]r^{-n}\} $$ ***Inverse Z transform*** $$ x[n]=\frac{1}{2\pi j}\oint_{|z|=r} X(z)z^{n-1}\mathrm d z $$ Other method: $$ X(z)=\sum_{n=0}^{\infin} x(n)z^{-n} $$ Rational form: Steps: 1. Divide by $z$: $\displaystyle \frac{X(z)}{z}=\frac{N(z)}{D(z)}$.(Add one pole to the function) 2. Using Partial fractional expansion: $\displaystyle \frac{X(z)}{z}\cdot z$. 3. Inverse Z transform. $$ \frac{z}{z-a} \overset{\mathcal Z}{\operatorname*{\longleftrightarrow}} \begin{cases} a^n u(n),&|z|>|a|\\ -a^{n} u(-n-1),&|z|<|a| \end{cases} $$ **Properties of Z Transform** | Property | Signal | Z Transform | ROC | | --------------------------------- | ------------------------- | ---------------------------------------------------- | ---------------------- | | Linearity | $ax_1[n]+bx_2[n]$ | $aX_1(z)+bX_2(z)$ | At least $R_1\cap R_2$ | | Time shifting | $x[n-n_0]$ | $z^{-n_0}X(z)$ | $R$ | | Scaling in the $z$-domain | $z_0^nx[n]$ | $X(z/z_0)$ | $z_0R$ | | Time reversal | $x[-n]$ | $X(z^{-1})$ | $R^{-1}$ | | Time expansion | $x_{(k)}[n]$ | $X(z^k)$ | $R^{1/k}$ | | Conjugation | $x^*[n]$ | $X^*(z^*)$ | $R$ | | Convolution | $x_1[n]*x_2[n]$ | $X_1(z)X_2(z)$ | At least $R_1\cap R_2$ | | First Difference | $x[n]-x[n-1]$ | $(1-z^{-1})X(z)$ | At least $R\cap |z|>0$ | | Accumulation | $\sum_{k=-\infin}^n x[k]$ | $\dfrac{X(z)}{1-z^{-1}}$ | At least $R\cap |z|>1$ | | **Differentiation in $z$-domain** | $nx[n]$ | $\displaystyle -z\frac{\mathrm d X(z)}{\mathrm d z}$ | $R$ | *Initial Value Theorem*: If $x[n]=0$ for $n<0$, then $x[0]=\lim_{z\to \infin} X(z)$. - Causal? - Stability? **Properties of Unilateral Z Transform** | Property | Signal | Uni ZT | | ----------------------------- | --------------------------------- | ------------------------------------------------------------ | | Linearity | $ax_1[n]+bx_2[n]$ | $a\mathcal X_1(z)+b\mathcal X_2(z)$ | | Time Delay | $x[n-1]$ | $z^{-1}\mathcal X(z)+x[-1]$ | | Time Delay 2 | $x[n-2]$ | $z^{-2}\mathcal X(z)+z^{-1}x[-1]+x[-2]$ | | Time Advance | $x[n+1]$ | $zX(z)-zx[0]$ | | Time Advance 2 | $x[n+2]$ | $z^2X(z)-z^2x[0]-zx[1]$ | | First Difference | $x[n]-x[n-1]$ | $(1-z^{-1})\mathcal X(z)-x[-1]$ | | Accumulation | $\displaystyle \sum_{k=0}^n x[k]$ | $\displaystyle \frac{1}{1-z^{-1}}\mathcal X(z)$ | | Differentiation in $z$-domain | $nx[n]$ | $-\displaystyle z\frac{\mathrm d \mathcal X(z)}{\mathrm d z}$ | *Initial Value Theorem*: $x[0]=\lim_{z\to \infin} \mathcal X(z)$.